МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ДРУЖНОГОРСКАЯ СРЕДНЯЯ ОБЩЕООБРАЗОВАТЕЛЬНАЯ ШКОЛА»

мбоу дружногоро При пожение к образовательной программе, утвержденной при казом № 271 –ОД от «31» августа 20 18 г.

Рабочая программа

по учебному предмету «Алгебра и начала математического анализа» для 10-11 классов

(базовый уровень)

Разработчик	программы:	
	D	

Василенко Юлия Александровна

(Ф.И.О. учителя)

учитель математики

(занимаемая должность, квалификационная категория)

1. Планируемые результаты освоения учебного предмета «Алгебра и начала математического анализа»

Предметные результаты освоения учебного предмета «Алгебра и начала анализа» в 10 - 11 классах

	Изучение алгебры в средней школе направлено на достижение следующих целей:	Изучение алгебры и начал анализа в средней школе дает возможность обучающимся достичь следующих результатов развития:
В предметном направлении	• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.	• значение математической науки для решения задач, возникающих в теории и практике; • широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе; • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки; • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики; • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций; • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения; • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности; • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике; • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики; • вероятностных характер различных процессов и закономерностей окружающего мира.

В базовом (*профильном) курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

- систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
- развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
- систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
- расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
- знакомство с основными идеями и методами математического анализа;
- совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
- формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

2. Содержание учебного предмета

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем . Свойства степени с действительным показателем.

Логарифм. Логарифм числа. *Основное логарифмическое тождество*. Логарифм произведения, частного, степени; *переход к новому основанию*. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс аргумента. Преобразования простейших тригонометрических половинного выражений. тригонометрические Простейшие уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства. Арксинус, арккосинус, арктангенс числа.

ФУНКЦИИ

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях. Обратная функция. Область определения и область значений обратной функции. График обратной функции. Степенная функция с натуральным показателем, ее свойства и график. Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций. Тригонометрические функции, их свойства и графики; периодичность, основной период. Показательная функция (экспонента), ее свойства и график. Логарифмическая функция, ее свойства и график. Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой у = х, растяжение и сжатие вдоль осей координат.

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Понятие о непрерывности функции. Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной. Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

УРАВНЕНИЯ И НЕРАВЕНСТВА

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Элементы комбинаторики. Правила произведения. Перестановки. Размещения. Сочетания и их свойства. Бином Ньютона.

Элементы теории вероятности. События. Комбинации событий. Противоположное событие. Вероятность события. Сложение вероятностей. Независимые события. Умножение вероятностей. Статистическая вероятность.

Элементы статистики. Случайные величины. Центральные тенденции. Меры разброса.

комплексные числа

Определение комплексных чисел. Сложение и умножение комплексных чисел. Модуль комплексного числа. Операции вычитания и деления. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Свойства модуля и аргумента комплексного числа. Квадратное уравнение с комплексным неизвестным. Примеры решения алгебраических уравнений.

Содержание курса в 10 классе

1.Действительные числа

Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателями.

Основные цели: формирование представлений о натуральных, целых числах, о признаках делимости, простых и составных числах, о рациональных числах, о периоде, о периодической дроби, о действительных числах, об иррациональных числах, о бесконечной десятичной периодической дроби, о модуле действительного числа; формирование умений определять бесконечно убывающую геометрическую прогрессию, вычислять по формуле сумму бесконечно убывающей геометрической прогрессии; овладение умением извлечения корня п-й степени и применение свойств арифметического корня натуральной степени; овладение навыками решения иррациональных уравнений, используя различные методы решения иррациональных уравнений и свойств степени с любым целочисленным показателем.

В результате изучения темы учащиеся должны:

знать: понятие рационального числа, бесконечной десятичной периодической дроби; определение корня п-й степени, его свойства; свойства степени с рациональным показателем;

уметь: приводить примеры, определять понятия, подбирать аргументы, формулировать выводы, приводить доказательства, развёрнуто обосновывать суждения; представлять бесконечную периодическую дробь в виде обыкновенной дроби; находить сумму бесконечно убывающей геометрической прогрессии; выполнять преобразования выражений, содержащих радикалы; решать простейшие уравнения, содержащие корни п-й степени; находить значения степени с рациональным показателем.

2.Степенная функция

Степенная функция, её свойства и график. Равносильные уравнения и неравенства. Иррациональные уравнения.

Основные цели: формирование представлений о степенной функции, о монотонной функции; формирование умений выполнять преобразование данного уравнения в уравнение-следствие, расширения области определения, проверки корней; овладение умением решать иррациональные уравнения методом возведения в квадрат обеих частей уравнения, проверки корней уравнения; выполнять равносильные преобразования уравнения и определять неравносильные преобразования уравнения.

В результате изучения темы учащиеся должны:

знать: свойства функций; схему исследования функции; определение степенной функции; понятие иррационально уравнения;

уметь: строить графики степенных функций при различных значениях показателя; исследовать функцию по схеме (описывать свойства функции, находить наибольшие и наименьшие значения); решать простейшие уравнения и неравенства стандартными методами; изображать множество решений неравенств с одной переменной; приводить примеры, обосновывать суждения, подбирать аргументы, формулировать выводы; решать рациональные уравнения, применяя формулы сокращённого умножения при их упрощении; решать иррациональные уравнения; составлять математические модели реальных ситуаций; давать оценку информации, фактам, процесса, определять их актуальность.

3.Показательная функция

Показательная функция, её свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

Основные цели: формирование понятий о показательной функции, о степени с произвольным действительным показателем, о свойствах показательной функции, о графике функции, о симметрии относительно оси ординат, об экспоненте; формирование умения решать показательные уравнения различными методами: уравниванием показателей, введением новой переменной; овладение умением решать показательные неравенства различными методами, используя свойства равносильности неравенств; овладение навыками решения систем показательных уравнений и неравенств методом замены переменных, методом подстановки.

В результате изучения темы учащиеся должны:

знать: определение показательной функции и её свойства; методы решения показательных уравнений и неравенств и их систем;

уметь: определять значения показательной функции по значению её аргумента при различных способах задания функции; строить график показательной функции; проводить описание свойств функции; использовать график показательной функции для решения уравнений и неравенств графическим методом; решать простейшие показательные уравнения и их системы; решать показательные уравнения, применяя комбинацию нескольких алгоритмов; решать простейшие показательные неравенства и их системы; решать показательные неравенства, применяя комбинацию нескольких алгоритмов; самостоятельно искать и отбирать необходимую для решения учебных задач информацию; предвидеть возможные последствия своих действий.

4.Логарифмическая функция

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, её свойства и график. Логарифмические уравнения. Логарифмические неравенства. Основные иели: формирование представлений о логарифме, об основании логарифма, о логарифмировании, о десятичном логарифме, о натуральном логарифме, о формуле перехода от логарифма с одним основанием к логарифму с другим основанием; формирование умения применять свойства логарифмов: логарифм произведения, логарифм частного, логарифм степени, при упрощении выражений, содержащих логарифмы; овладение умением решать логарифмические уравнения; переходя к равносильному логарифмическому уравнению, метод потенцирования, метод введения новой переменной, овладение навыками решения логарифмических неравенств. В результате изучения темы учащиеся должны:

знать: понятие логарифма, основное логарифмическое тождество и свойства логарифмов; формулу перехода; определение логарифмической функции и её свойства; понятие логарифмического уравнения и неравенства; методы решения логарифмических уравнений; алгоритм решения логарифмических неравенств;

уметь: устанавливать связь между степенью и логарифмом; вычислять логарифм числа по определению; применять свойства логарифмов; выражать данный логарифм через десятичный и натуральный; применять определение логарифмической функции, её свойства в зависимости от основания; определять значение функции по значению аргумента при различных способах задания функции ;решать простейшие логарифмические уравнения, их системы; применять различные

методы для решения логарифмических уравнений; решать простейшие логарифмические неравенства.

5. Тригонометрические формулы

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов а и а. Формулы сложения.. синус, косинус и тангенс двойного угла.. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов.

Основные цели: формирование представлений о радианной мере угла, о переводе радианной меры в градусную и наоборот, градусной - в радианную; о числовой окружности на координатной плоскости; о синусе, косинусе, тангенсе, котангенсе, их свойствах; о четвертях окружности; формирование умений упрощать тригонометрические выражения одного аргумента; доказывать тождества; выполнять преобразование выражений посредством тождественных преобразований; овладение умением применять формулы синуса и косинуса суммы и разности, формулы двойного угла для упрощения выражений; овладение навыками использования формул приведения и формул преобразования суммы тригонометрических функций в произведение.

В результате изучения темы учащиеся должны:

знать: понятия синуса, косинуса, тангенса, котангенса произвольного угла; радианной меры угла; как определять знаки синуса, косинуса и тангенса простого аргумента по четвертям; основные тригонометрические тождества; доказательство основных тригонометрических тождеств; формулы синуса, косинуса суммы и разности двух углов; формулы двойного угла; вывод формул приведения;

уметь: выражать радианную меру угла в градусах и наоборот; вычислять синус, косинус, тангенс и котангенс угла; используя числовую окружность определять синус, косинус, тангенс, котангенс произвольного угла; определять знаки синуса, косинуса, тангенса, котангенса по четвертям; выполнять преобразование простых тригонометрических выражений; упрощать выражения с применением тригонометрических формул; объяснять изученные положения на самостоятельно подобранных конкретных примерах; работать с учебником, отбирать и структурировать материал; пользоваться энциклопедией, справочной литературой; предвидеть возможные последствия своих действий.

6. Тригонометрические уравнения

Уравнение $\cos x = a$. Уравнение $\sin x = a$. Уравнение tgx = a. Решение тригонометрических уравнений.

Основные цели: формирование представлений о решении тригонометрических уравнений на числовой окружности, об арккосинусе, арксинусе, арктангенсе, арккотангенсе числа; формирование умений решения простейших тригонометрических уравнений, однородных тригонометрических уравнений; овладение умением решать тригонометрические уравнения методом введения новой переменной, методом разложения на множители; расширение и обобщение сведений о видах тригонометрических уравнений.

В результате изучения темы учащиеся должны:

знать:определение арккосинуса, арксинуса, арктангенса и формулы для решения простейших тригонометрических уравнений; методы решения тригонометрических уравнений;

уметь: решать простейшие тригонометрические уравнения по формулам; решать квадратные уравнения относительно sin, cos, tg и ctg; определять однородные уравнения первой и второй степени и решать их по алгоритму, сводя к квадратным; применять метод введения новой переменной, метод разложения на множители при решении тригонометрических уравнений; аргументировано отвечать на поставленные вопросы; осмысливать ошибки и устранять их; самостоятельно искать и отбирать необходимую для решения учебных задач информацию.

7. Тригонометрические функции

Область определения и множество значений тригонометрических функций. Чётность, нечётность, периодичность тригонометрических функций. Свойства и графики функций $y = \cos x$, $y = \sin x$, $y = \tan x$.

Основные цели: формирование представлений об области определения и множестве значений тригонометрических функций, о нечётной и чётной функциях, о периодической функции, о периоде функции, о наименьшем положительном периоде; формирование умений находить область определения и множество значений тригонометрических функций сложного аргумента, представленного в виде дроби и корня; овладение умением свободно строить графики тригонометрических функций и описывать их свойства;

В результате изучения темы учащиеся должны:

знать:область определения и множество значений элементарных тригонометрических функций; тригонометрические функции, их свойства и графики;

уметь: находить область определения и множество значений тригонометрических функций; множество значений тригонометрических функций вида kf(x) m, где f(x)- любая тригонометрическая функция; доказывать периодичность функций с заданным периодом; исследовать функцию на чётность и нечётность; строить графики тригонометрических функций; совершать преобразование графиков функций, зная их свойства; решать графически простейшие тригонометрические уравнения и неравенства.

8. Повторение курса алгебры 10 класса

Степенная, показательная и логарифмическая функции. Решение показательных, степенных и логарифмических уравнений. Решение показательных, степенных и логарифмических неравенств. Тригонометрические формулы. Тригонометрические тождества. Решение тригонометрических уравнений. Решение систем показательных и логарифмических уравнений. Текстовые задачи на проценты, движение.

Основные цели: обобщить и систематизировать курс алгебры и начала анализа за 10 класс, решая тестовые задания по сборникам тренировочных заданий по подготовке к ЕГЭ; создать условия для плодотворного участия в работе в группе; формировать умения самостоятельно и мотивированно организовывать свою деятельность.

Содержание курса в 11 классе

1. Производная и её геометрический смысл

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Основные цели: формирование понятий о мгновенной скорости, о касательной к плоской кривой, о касательной к графику функции, о производной функции, о физическом смысле производной, о геометрическом смысле производной, о скорости изменения функции, о пределе функции в точке, о дифференцировании, о производных элементарных функций; формирование умения использовать алгоритм нахождения производной элементарных функций простого и сложного аргумента; овладение умением находить производную любой комбинации элементарных функций; овладение навыками составления уравнения касательной к графику функции при дополнительных условиях, нахождения углового коэффициента касательной, точки касания.

В результате изучения темы учащиеся должны:

знать: понятие производной функции, физического и геометрического смысла производной; понятие производной степени, корня; правила дифференцирования; формулы производных элементарных функций; уравнение касательной к графику функции; алгоритм составления уравнения касательной;

уметь: вычислять производную степенной функции и корня; находить производные суммы, разности, произведения, частного; производные основных элементарных функций; находить производные элементарных функций сложного аргумента; составлять уравнение касательной к графику функции по алгоритму; участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение; объяснять изученные положения на самостоятельно подобранных примерах; осуществлять поиск нескольких способов решения, аргументировать рациональный способ, проводить доказательные рассуждения; самостоятельно искать необходимую для решения учебных задач информацию.

2.Применение производной к исследованию функций

Возрастание и убывание функций. Экстремумы функции. Применение производной к построению графиков функций. Наибольшее и наименьшее значения функции. Выпуклость графика. Точки перегиба.

Основные цели: формирование представлений о промежутках возрастания и убывания функции, о достаточном условии возрастания функции, о промежутках монотонности функции, об окрестности точки, о точках максимума и минимума функции, о точках экстремума, о критических точках; формирование умения строить эскиз графика функции, если задан отрезок, значения функции на концах этого отрезка и знак производной в некоторых точках функции; овладение умением применять производную к исследованию функций и построению графиков; овладение навыками исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функций, точки перегиба и интервалы выпуклости.

В результате изучения темы учащиеся должны:

знать: понятие стационарных, критических точек, точек экстремума; как применять производную к исследованию функций и построению графиков ;как исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функции;

уметь: находить интервалы возрастания и убывания функций; строить эскиз графика непрерывной функции, определённой на отрезке; находить стационарные точки функции, критические точки и точки экстремума; применять производную к исследованию функций и построению графиков; находить наибольшее и наименьшее значение функции; работать с учебником, отбирать и структурировать материал.

3.Первообразная и интеграл

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов. Основные цели: формирование представлений о первообразной функции, о семействе первообразных, о дифференцировании и интегрировании, о таблице первообразных, о правилах отыскания первообразных; формирование умений находить для функции первообразную, график которой проходит через точку, заданную координатами; овладение умением находить площадь криволинейной трапеции, ограниченной графиками функций y = f(x) и y = g(x), ограниченной прямыми x = a. x = b, осью Ох и графиком y = h(x).

В результате изучения темы учащиеся должны:

знать: понятие первообразной, интеграла; правила нахождения первообразных; таблицу первообразных; формулу Ньютона Лейбница; правила интегрирования;

уметь: проводить информационно-смысловой анализ прочитанного текста в учебнике, участвовать в диалоге, приводить примеры; аргументировано отвечать на поставленные вопросы, осмысливать ошибки и их устранять; доказывать, что данная функция является первообразной для другой данной функции; находить одну из первообразных для суммы функций и произведения функции на число, используя справочные материалы; выводить правила отыскания первообразных; изображать криволинейную трапецию, ограниченную графиками элементарных функций; вычислять интеграл от элементарной функции простого аргумента по формуле Ньютона Лейбница с помощью таблицы первообразных и правил интегрирования; вычислять площадь криволинейной трапеции, ограниченной прямыми x = a, x = b, осью Ох и графиком квадратичной функции; находить площадь криволинейной трапеции, ограниченной параболами; вычислять путь, пройденный телом от начала движения до остановки, если известна его скорость; предвидеть возможные последствия своих действий; владеть навыками контроля и оценки своей деятельности.

4.Элементы математической статистики, комбинаторики и теории вероятностей

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочерёдный и одновременны выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая

частота наступления события. Решение практических задач с применение вероятностных методов. Случайные величины. Центральные тенденции. Меры разброса. Решение практических задач по теме «Статистика».

Основные цели: формирование представлений о научных, логических, комбинаторных методах решения математических задач; формирование умения анализировать, находить различные способы решения одной и той же задачи, делать выводы; развитие комбинаторно-логического мышления; формирование представления о теории вероятности, о понятиях: вероятность, испытание, событие (невозможное и достоверное), вероятность событий, объединение и пересечение событий, следствие события, независимость событий; формирование умения вычислять вероятность событий, определять несовместные и противоположные события; овладение умением выполнения основных операций над событиями; овладение навыками решения практических задач с применением вероятностных методов;

В результате изучения темы учащиеся должны:

знать: понятие комбинаторной задачи и основных методов её решения (перестановки, размещения, сочетания без повторения и с повторением);понятие логической задачи; приёмы решения комбинаторных, логических задач; элементы графового моделирования; понятие вероятности событий; понятие невозможного и достоверного события; понятие независимых событий; понятие условной вероятности событий; понятие статистической частоты наступления событий;

уметь: использовать основные методы решения комбинаторных, логических задач; разрабатывать модели методов решения задач, в том числе и при помощи графвого моделирования; переходить от идеи задачи к аналогичной, более простой задаче, т.е. от основной постановки вопроса к схеме; ясно выражать разработанную идею задачи; вычислять вероятность событий; определять равновероятные события; выполнять основные операции над событиями; доказывать независимость событий; находить условную вероятность; решать практические задачи, применяя методы теории вероятности.

5. Обобщающее повторение курса алгебры и начал анализа за 10- 11 классы Числа и алгебраические преобразования. Уравнения. Неравенства. Системы уравнений и неравенств. Производная функции и ее применение к решению задач. Функции и графики. Текстовые задачи на проценты, движение, прогрессии.

Основные цели: обобщение и систематизация курса алгебры и начал анализа за 10- 11 классы; создание условий для плодотворного участия в групповой работе, для формирования умения самостоятельно и мотивированно организовывать свою деятельность; формирование представлений об идеях и методах математики, о математике как средстве моделирования явлений и процессов; развитие логического и математического мышления, интуиции, творческих способностей; воспитание понимания значимости математики для общественного прогресса.

В рабочей программе изменено соотношение часов на изучение тем и итоговое повторение в сторону уменьшения по отношению к типовой программе. Высвободившиеся часы отведены на обобщающее повторение по каждой теме, работу с тестами и подготовку к итоговой аттестации в форме и по материалам ЕГЭ. Подготовку к экзаменам планируется проводить в системе, начиная с 10 класса.

1. Тематическое планирование

Данная программа предназначена для 10-11 классов общеобразовательных школ. Она рассчитана на 204 часа: 3 часа в неделю в 10 классе (102 часа), 3 часа в неделю в 11 классе (102 часа).

Соответствует учебнику: Алимов Ш.А. Алгебра и начала математического анализа. Учебник для 10-11 классов общеобразовательных организаций: базовый и углубленный уровни. М., «Просвещение», 2018.

№ главы	Наименование раздела	Всего часов	Кол-во контр. работ			
10 класс						
I	Действительные числа	8	2			
II	Степенная функция	10	1			
III	Показательная функция	10	1			
IV	Логарифмическая функция	14	1			
V	Тригонометрические формулы	20	1			
VI	Тригонометрические уравнения	14	1			
VII	Тригонометрические функции	14	1			
	Итоговое повторение	12	1			
	ИТОГО:	102	9			
11 класс						
	Повторение курса алгебры и начал анализа 10 класса	4	1			
VIII	Производная и ее геометрический смысл	15	1			
IX	Применения производной к исследованию функции	14	1			
X	Интеграл	16	1			
	Комплексные числа	8	-			
XI	Комбинаторика	10	1			
XII	Элементы теории вероятностей	10	1			
XIII	Статистика	10	1			
	Итоговое повторение курса алгебры и начал анализа	15	1			
	ИТОГО:	102	8			